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Abstract. We review the recent progress in the study of magnetic materials using a high-frequency
electron spin-resonance (ESR) technique. First, we show how useful high-frequency ESR is
for studying antiferromagnetic materials, where the ESR frequency and magnetic field depend
greatly on the exchange interaction and anisotropy energy of the materials. Next, we review the
recent high-frequency ESR experiments made on spin S = 1 quasi-one-dimensional Heisenberg
antiferromagnets (Q1D HAFs) and the spin–Peierls system CuGeO3. Then, we review the ESR
studies performed on more complex systems, such as an S = 1 Q1D HAF with bond alternation,
spin-ladder compounds and quasi-two-dimensional magnets. Each of these systems has a singlet
ground state of quantum origin and an energy gap to the lowest excited state. On applying an
external magnetic field, these systems show a transition from the non-magnetic to a magnetized
state, and in some cases, long-range magnetic ordering occurs. Efforts are made to explain the
underlying physics intuitively at the expense of rigour.

1. Introduction

The phenomenon of electron spin resonance (ESR) was discovered in 1945 by Zavoisky [1].
At about the same time that of nuclear magnetic resonance (NMR) was also discovered [2,3].
These magnetic resonance techniques have been used to elucidate many interesting properties
of materials from a microscopic point of view.

The basic principle of ESR is as follows. The magnetic properties of matter originate, in
most cases, from the spin and orbital moments of electrons. When a paramagnetic material is
immersed in a magnetic field, B, a magnetization, M , is induced by B†.

Since M is proportional to the angular momenta, we have the following equation of
motion:

dM/dt = γ [M × B]. (1)

The stationary solution of equation (1) gives a precession of M around B whose frequency,
ν, is given by

ν = γB/2π. (2)

If a microwave with frequency ν is fed perpendicularly to B, i.e., in the plane of the precession,
the energy of the microwave is absorbed by the magnetic system. The energy absorbed by the
magnetic system then flows to the heat reservoir. Because of this, we are able to observe the
absorption of the microwaves by magnetic materials.

† It is noted that H has been widely used as the notation for a magnetic field. In the following, we use B to represent
a magnetic field except in the figures which have been taken from the literature. For consistency with the figures, we
sometimes use H in parallel to B in the text.
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For the quantum mechanical description of the ESR phenomena, we consider the simplest
case in which non-interacting magnetic atoms exist in the sample, each of which has a magnetic
moment gµBS, where g is the g-value, µB the Bohr magneton and S the spin operator. In
applied magnetic fields, each magnetic atom shows 2S + 1 Zeeman split levels with energies
gµBSzB, where Sz (=S, S − 1, . . . , −S) is the z-component of S (z ‖ B). If an oscillating
magnetic field b cos(2πνt) is applied perpendicularly to B, say along the x-direction, this
oscillating field induces transitions between the energy levels whose Sz-values differ by ±1.
This is due to the fact that the matrix element bSx , which is proportional to the transition
probability, has a non-zero value when connecting states whose Sz-values differ by ±1. From
a simple calculation, we have the relation hν = gµBB, which is the same as that obtained
from the classical equation of motion, equation (1), if we set γ = 2πgµB/h in equation (2),
where h is Planck’s constant.

The relation between the energy and momentum of electromagnetic waves (light) is
much steeper than that of magnetic systems; one measures the excitation spectrum only at
zero momentum by means of ESR. This is a disadvantage of the ESR technique in studying
condensed matter compared with neutron scattering methods which can probe a wide range
of momentum space. The advantages of ESR methods over others include the high sensitivity
and high energy resolution.

The term ESR has been widely used to describe magnetic resonance phenomena where
electron spins play an essential role. Chemists and biologists have been using the term ‘electron
paramagnetic resonance (EPR)’ because the samples that they are interested in have mostly
been paramagnetic [4]. Since the resonant frequency of EPR is proportional to the resonant
magnetic field as can be seen from equation (2), one might say that one does not need high-
frequency–high-field ESR apparatus. As science advances, researchers handle more complex
systems in which EPR signals become overlapped. The same is true for NMR. In such cases,
we can resolve the signals by increasing the frequency and consequently the magnetic field.
This is why the frequency of a high-resolution NMR spectrometer continues to increase. There
has also been progress in the development of a high-frequency–high-field EPR spectrometer
for chemical research [5].

In this article, we review the recent achievements made in the field of magnetism using
a high-frequency–high-field ESR technique. Here, we use the term ‘high’ frequency rather
broadly. The most popular ESR spectrometer commercially available operates in the X band
(where ν ∼ 10 GHz). The highest-frequency machine now commercially available works at
ν ∼ 90 GHz. So, ESR measurements made above ∼100 GHz may be considered as at ‘high’
frequency. Although the development of the technique is essential in this field of research, we
will not describe the technique here, because this may not be interesting to the readers of this
journal. We will try to explain the physics obtained from these studies, rather than present a
collection of data.

In section 2, we show the result of an ESR measurement made on an antiferromagnet
which demonstrates that high-frequency ESR is indispensable for obtaining information on
the magnetic properties. We call ESR in the antiferromagnetically ordered phase ‘antiferro-
magnetic resonance (AFMR)’ [6]. ESR in the ordered phase of a ferromagnet is called
‘ferromagnetic resonance (FMR)’. The relation between the resonant frequency and magnetic
field of FMR is determined from equation (1) by replacing B with the internal field, B−NM ,
where N is the demagnetizing factor of the sample.

In recent years, quantum effects in lower-dimensional magnets have been attracting great
interest. After summarizing basic knowledge about lower-dimensional magnetism in section 3,
we review the ESR studies on these quantum magnets in section 4. In section 5 we review
some ESR results obtained for more complex systems.
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2. Antiferromagnetic resonance

The transition metal difluorides, MF2 (M = Mn, Fe, Co), are a typical example of insulating
antiferromagnets [7]. Figure 1 shows the crystal and magnetic structures of MnF2. This
compound exhibits an antiferromagnetic ordering below 67.3 K with the spin easy axis parallel
to the c-axis.

Figure 1. The crystal and magnetic structures of MnF2. Arrows show the magnetic moment.

Figure 2 shows the results of AFMR measurements made on a single crystal of MnF2 at
low temperatures well below the ordering temperature [8, 9]. Even at B = 0, we have a finite
ESR frequency at 259.7 GHz. On applying B parallel to the c-axis, we observe two branches,
for one of which the ESR frequency increases with increasing field, while it decreases with
field and becomes zero at 9.3 T for the other branch. Above 9.3 T, we have a single branch
whose ESR frequency increases with increasing field. When B is applied perpendicularly to
the c-axis, we see a single branch with a finite frequency at B = 0.

Let us consider what is happening at 9.3 T. Figure 3 shows the temperature dependence of
the magnetic susceptibility, χ , of MnF2 [8] whose form is typical of a uniaxial antiferromagnet.
Below the antiferromagnetic ordering temperature, TN,χ along the spin easy axis,χ‖, decreases
with decreasing temperature, because the magnetic moments order as shown in figure 1 where
the net magnetization decreases to zero with decreasing temperature. If we turn the magnetic
moments perpendicular to the easy axis along which B is applied, a net magnetization is
induced along B, the rate of which does not depend much on temperature as is evident from
the behaviour of χ⊥ in figure 3. Strictly speaking, χ⊥ shown in figure 3 is the susceptibility
when B is applied perpendicularly to the c-axis. However, χ⊥(B ‖ c) is almost the same
as χ⊥(B ⊥ c). Therefore, we expect a flopping of the magnetic moments to occur at the
critical field denoted by BSF, where the gain in the magnetic energy exceeds the loss in the
anisotropy energy.

A theoretical treatment of AFMR has been successfully carried out on the basis of a
two-sublattice model with a molecular-field approximation [10]. The up sublattice, M+,
represents all of the magnetic moments that point upwards and the down sublattice, M−,
all of those pointing downwards. We introduce an exchange field, BE, originating from the
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Figure 2. The frequency versus magnetic field plot of the ESR signals observed in a single-crystal
sample of MnF2 in the antiferromagnetically ordered phase. (Figure from reference [9].)

Figure 3. The temperature dependence of the magnetic susceptibility of MnF2 parallel and
perpendicular to the c-axis. (Figure from reference [8].)
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exchange interaction between spins. We also introduce an anisotropy field, BA, which forces
the magnetic moments to point parallel or antiparallel to the spin easy axis (the c-axis in
MnF2). Then, we have the equation of motion for each of M+ and M− in the form given by
equation (1) with B replaced by B + BE + BA. After a simple calculation we have, in the case
of B ‖ c-axis,

hν/gµB =
√

2Ku/χ⊥ + (χ‖B/2χ⊥)2 ± B(1 − χ‖/2χ⊥) (3)

for B < BSF and

hν/gµB =
√
B2 − 2Ku/χ⊥ (4)

for B > BSF. Here, we have used the relations BE = M0/χ⊥ and BA = Ku/M0, whereM0 is
the magnitude of the sublattice magnetization at T = 0 and Ku is the anisotropy constant. At
low temperatures, χ‖ is much smaller than χ⊥ and so equation (3) becomes

hν/gµB =
√

2Ku/χ⊥ ± B. (5)

Equation (5) represents the two branches in figure 2 below 9.3 T, while equation (4) represents
the single branch above 9.3 T. When B is applied perpendicularly to the spin easy axis, we
have

hν/gµB =
√
B2 + 2Ku/χ⊥ (6)

which represents the branch for B ⊥ c-axis in figure 2.
The full and dash–dotted lines in figure 2 are theoretical ones, equations (4)–(6). If we

adjust the two parameters,
√

2Ku/χ⊥ = 9.27 T and g = 2.00, the theory explains all of the
experimental data quite well. The dotted line shows an EPR line with g = 2.00 along which a
weak ESR signal is observed even in the ordered phase. The possibility of observing an EPR
signal in the magnetically ordered phase has been predicted theoretically [11]. The vertical
straight line at 9.3 T represents the critical field resonance mode [10] from which a weak ESR
signal is observed.

The AFMR positions change with temperature. Figure 4 shows the temperature depend-
ence of the resonance field of the AFMR mode given by equation (3) with the minus sign at fixed
frequencies. In equation (3),Ku, χ‖ andχ⊥ depend on temperature. We use for the temperature
dependence of the ratio χ‖/χ⊥ the experimental value deduced from figure 3. Then, we have
only one adjustable parameter, Ku/χ⊥. We obtain the temperature dependence of Ku/χ⊥ by
fitting equation (3) with the data taken at 50.5 GHz. We can then compare the theory with the
experiments performed at 21.7 GHz and 36.8 GHz without any adjustable parameters. The
agreement between theory and experiment at the two frequencies is satisfactory.

It may be recognized that an AFMR measurement gives important information on the
magnetic properties, e.g., the exchange interaction, the anisotropy and the direction of the
magnetic moments. The frequency at B = 0,

√
2Ku/χ⊥, is given by the geometric mean of

BE and BA. In order to study a wide variety of antiferromagnetic materials, one needs as wide
a range of frequency and magnetic field as possible.

3. Fundamentals of lower-dimensional magnetism

In an insulating material, electrons are almost localized at the atomic sites with a small degree
of covalent bonding to the neighbouring atoms. Therefore, we have a chance to fabricate a
magnetic material in which the magnetic interaction in one direction dominates, with much
weaker interactions in other directions. We define this class of materials as the quasi-one-
dimensional (Q1D) magnets. Similarly, we define a quasi-two-dimensional (Q2D) magnet as
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Figure 4. The temperature dependence of the resonance field in MnF2 at the designated frequencies.
The full and dashed curves are theoretical ones. (Figure from reference [8].)

one in which an overwhelming interaction exists in the plane with a much weaker interaction
between planes. In insulating magnets a well defined magnetic moment exists at each atomic
site. We denote this magnetic moment by m (≡gµBS) and call S the ‘spin’. We include the
effects of spin–orbit interaction and crystal fields in this definition, so the g-value deviates
from its free-electron value 2.0023 and becomes anisotropic. The value of S can be 1

2 , 1,
3
2 , . . .

depending on the magnetic atom in question.
Because a 1D magnetic system is the simplest realization of interacting many-body

problems, the study of 1D magnetism has a long history, starting with the pioneering work of
Bethe [12]. In the 1960s and early 1970s, a number of real materials close to the model 1D and
2D systems were discovered [13], which greatly stimulated the development of the field. In
the early 1980s, a new horizon was opened towards the understanding of quantum phenomena
in lower-dimensional magnetic systems.

Let us start with the simplest case, shown in figure 5, in which two magnetic atoms with
S = 1

2 at sites 1 and 2 are coupled by an exchange interaction, J .

Figure 5. The energy level scheme for an exchange-coupled spin- 1
2 dimer.
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The Hamiltonian describing this system is given by

H = JS1 · S2. (7)

In the case of ferromagnetic interactions (J < 0), the ground state is a triplet with the
eigenfunctions given by α(1)α(2), β(1)β(2) and {α(1)β(2) + β(1)α(2)}/√2, where α(1) and
β(2) are the eigenfunctions of Sz = 1

2 at site 1 and Sz = − 1
2 at site 2, respectively. The excited

state is a singlet with the eigenfunction {α(1)β(2)− β(1)α(2)}/√2. The situation is reversed
in the case of antiferromagnetic interactions (J > 0), as shown in figure 5.

Theoretical physicists have been studying purely 1D systems with the following
Heisenberg Hamiltonian:

H =
∑
i,j

JijSi · Sj (8)

where Jij is the exchange interaction between spins at sites i and j .
Figure 6(a) shows the simplest 1D magnetic model with the nearest-neighbour interaction

only. In the case of ferromagnetic interactions, the situation is trivial. The ground state is
the one with all of the magnetic moments aligned in one direction. On the other hand, in the
case of antiferromagnetic interactions, the ground state is far from what we naı̈vely imagine.
Anderson [14] pointed out that for an S = 1

2 1D Heisenberg antiferromagnet (HAF) the energy
of a dimerized state, as depicted in figure 6(b), is lower than that of the classical Néel state,
shown schematically in figure 6(c). The wave function ( ) of the dimerized state is given by

 = (12)(34)(56) · · · (9)

where (··) represents the eigenfunction of the singlet state of equation (7) given above. It
should be emphasized that the state given in figure 6(b) is a model which approximates the
ground state of an S = 1

2 1D HAF better than the Néel state (figure 6(c)). The true ground
state of the Hamiltonian (equation (8)) with Jij = J consists of all possible combinations of
singlet dimers, called the resonating-valence-bond (RVB) ground state [14]. So, the ground
state of an S = 1

2 1D HAF is a singlet of quantum origin.

Figure 6. (a) A model describing a one-dimensional magnet interacting with nearest-neighbour
exchange interaction (J ). Circles show magnetic atoms. The numbers indicate the sites. (b) A
model describing a dimerized singlet state. (c) A model describing the classical Néel state. Arrows
show magnetic moments.

The low-energy excitation spectra of an S = 1
2 1D HAF have been calculated rigorously

[15–17]. Figure 7 shows the theoretical excitation energy (E(k)) as a function of momentum
k. No energy gap exists at the points k = 0 and π . The elementary excitation is a kink with
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Figure 7. The theoretical excitation spectra of an S = 1
2 one-

dimensional Heisenberg antiferromagnet.

S = 1
2 [17] now called a ‘spinon’. The dispersion relation for the spinon excitation is given

by [17]

E(k) = 1

2
πJ sin(k) 0 � k � π. (10)

We can intuitively understand that the spinon excitation from the sea of the singlet ground state
does not need to break the local exchange bonds (if we broke the bond locally, we would have
an S = 1 excitation), so the excitation energy at k = 0 and π can be very small.

In 1983, Haldane [18] argued that the excitation spectrum of a 1D HAF with integer S
(=1, 2, 3, . . . ) is radically different from that with half-odd-integer S (= 1

2 , 3
2 , 5

2 , . . . ). The
former is expected to have an energy gap between the ground state and first excited one in
contrast to the case for the latter. Haldane’s argument is based on a field theoretical treatment
of the 1D HAF problem and is not easy to understand for non-specialists. We will give an
explanation for the existence of the energy gap (Haldane gap) later.

As was proposed by Affleck et al [19], the ground state of an integer-S 1D HAF is well
described by the valence-bond-solid (VBS) model. This was confirmed experimentally by
Hagiwara et al [20] as will be shown later. Figure 8(a) depicts the VBS state for S = 1.
Spin 1 is obtained by symmetrization of two S = 1

2 variables. The spin-singlet state can be
written with two valence bonds emanating from each site and terminating at different sites.
The existence of the energy gap can be understood intuitively as follows: when the strength of

Figure 8. (a) Diagrammatic representation for the valence-bond-solid (VBS) ground state of an
S = 1 one-dimensional Heisenberg antiferromagnet. The larger circles show the magnetic atoms
with S = 1 and the smaller ones the S = 1

2 variables. (b) The VBS state with JD  K , where
JD is the valence bond and K is the force needed to align the two S = 1

2 variables parallel to each
other in a given atom.
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the valence bond, JD, is much larger than the force,K , needed to align the two S = 1
2 variables

in a given atom, the system can be viewed as a collection of antiferromagnetic dimers coupled
by a weak ferromagnetic interaction as shown schematically in figure 8(b). In this case, the
ground state is a singlet with a gap of ∼JD to the excited triplet as explained above. On
increasing K relative to JD, the gap energy will decrease and the triplet excitation will have
a dispersion. There is no phase transition between the S = 1

2 dimer and the S = 1 Haldane
states [21]. Because of the quantum many-body effects, the Haldane gap energy (EG) is given
by ∼0.41J [22]. The most accurate value to date is obtained from an exact diagonalization
as EG/J = 0.410 49 ± 2 × 10−5 [23]. From a numerical calculation, Takahashi [24] showed
that the energy gap at k = 0 is about two times larger than that at k = π . The value of the
Haldane gap is shown to decrease with S as EG ∼ JS2 exp(−πS) [18]. So, the observation
of EG becomes difficult at higher values of S.

Figure 9 shows schematically some typical examples of 1D and Q1D magnets. Figure 9(a)
illustrates a 1D magnet interacting with the nearest-neighbour exchange J . A variant of
figure 9(a) is shown in figure 9(b) in which the exchange interaction changes from J1 to J2

alternately. There are several variations for 1D magnets, e.g., a 1D magnet with alternating spin
values S1 and S2, a 1D magnet with competing nearest-neighbour and next-nearest-neighbour
exchange interactions and so on. In the latter case, a helical structure is expected for the
classical spin. A quantum version of this model shows interesting properties [25–27].

Figure 9. Schematic representations of some typical examples of one-dimensional and quasi-one-
dimensional magnets.

In an insulating magnet, the exchange interaction depends greatly on the distance between
the magnetic atoms. If an S = 1

2 1D HAF gains exchange energy by contracting the separation
between magnetic atoms at the cost of lattice energy, the system shows a transition to a
dimerized singlet ground state as shown schematically in figure 9(c). This is called a spin–
Peierls transition. A number of organic materials exhibiting a spin–Peierls transition has
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been reported [28]. In 1993, Hase et al [29] found the first inorganic material CuGeO3 that
exhibited a spin–Peierls transition. The advantage of this inorganic spin–Peierls material over
the organic ones is that the former can be doped with many kinds of ion to form alloys such
as GeCu1−xZnxO3, GeCu1−xMgxO3, GeCu1−xNixO3 and CuGe1−xSixO3. A striking effect
of the doping is that a small amount of impurity destroys the singlet ground state and induces
an antiferromagnetic long-range ordering. The concentration, x, versus temperature phase
diagram of CuGe1−xSixO3 obtained by Renard et al [30] is shown in figure 10.

Figure 10. The concentration (x) versus temperature phase diagram of CuGe1−xSixO3. AF:
antiferromagnetic phase; SP: spin–Peierls phase. (Figure from reference [30].)

The coexistence of lattice dimerization and antiferromagnetic ordering has been observed
below the Néel temperature in CuGe0.993Si0.007O3 [31] and in Cu1−xZnxGeO3 [32] by neutron
scattering experiments. Fukuyama et al [33] presented a theory to explain the disorder-induced
long-range antiferromagnetic ordering found in doped CuGeO3. According to this theory, an
edge spin is created at the Cu site which neighbours the impurities. This edge spin induces
a staggered moment at the Cu sites whose amplitude decreases with the distance from the
impurity. These magnetized chains interact with the neighbouring chains resulting in long-
range ordering. The lattice dimerization can coexist with the magnetic ordering in such a
way that the maximum displacement of the lattice occurs at the position where the staggered
moment is at a minimum.

Figure 9(d) shows schematically a two-leg spin ladder, in which two 1D magnets are
coupled with the exchange interaction J⊥. The ground state of an S = 1

2 antiferromagnetic
two-leg ladder is a singlet with an energy gap to the lowest excited triplet [34]. Generally,
S = 1

2 antiferromagnetic spin ladders with even numbers of legs show the property mentioned
above. On the other hand, the corresponding ladders with odd numbers of legs have no gap in
the excitation spectrum [34]. The existence of an energy gap in the excitation spectrum of an
S = 1

2 two-leg antiferromagnetic ladder can be understood similarly to the case of the S = 1
1D HAF. When J⊥  J‖ (>0), the system is viewed as a collection of almost independent
S = 1

2 dimers. In this case, the low-energy spectrum consists of a singlet ground state and
an excited triplet with an energy gap of ∼J⊥. Theoretical studies [35–39] showed that on
decreasing J⊥ relative to J‖ the energy gap decreases and the triplet excitation has a dispersion
due to the many-body quantum effect. The excitation energy has a minimum at k = π whose
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value is given by 0.504J⊥ for an isotropic (J‖ = J⊥) two-leg ladder [40]. The energy gap at
k = π is commonly called a ‘spin gap’.

On increasing the number of legs in the spin ladder, one approaches a 2D magnet. The
energy gap deceases with the increase in the number of legs [34]. The ground state of an
S = 1

2 square-lattice HAF has been assumed [41] to be Néel ordered with a finite magnetic
moment at each magnetic atom, aligned antiparallel to the moments on the neighbouring atoms.
The elementary excitation from the Néel state is well approximated by spin waves. A small
deviation in the magnetic moments from the fully aligned state propagates in the crystal like
a wave, which is called a ‘spin wave’. In the absence of anisotropy, the spin-wave spectrum
has no gap at k = 0. Consequently, the relation between the frequency and magnetic field of
the AFMR in a 2D HAF is the same as that for EPR.

The discovery of a high-temperature superconductor [42] has stimulated the study of 2D
antiferromagnets. Yildirim et al [43] have made a detailed calculation of the electronic states
of the lamellar copper oxides. They showed that there exists an in-plane as well as out-of-plane
anisotropies even in a system with tetragonal symmetry originating from the combined effects
of spin–orbit and Coulomb exchange interactions. As a result, one expects an in-plane spin-
wave gap at k = 0 due to the quantum zero-point energy. Attempts to observe this in-plane
gap using a neutron inelastic scattering technique [44] were not successful because the energy
resolution near k = 0 in the sub-meV range (1 meV � 242 GHz) is not sufficient for this
purpose if one uses thermal neutrons. A recent ESR measurement on the S = 1

2 tetragonal
Heisenberg antiferromagnets Sr2CuO2Cl2 and Sr2Cu3O4Cl2 revealed clearly the existence of
an energy gap of quantum origin [45].

4. ESR study on one-dimensional Heisenberg antiferromagnets

4.1. ESR in Haldane materials

We call Q1D Heisenberg antiferromagnets with integer S Haldane materials. The most
extensively studied S = 1 Haldane material is Ni(C2H8N2)2NO2(ClO4), abbreviated as NENP.
Here, Ni2+ (3d8) has spin 1. This compound crystallizes in the orthorhombic system [46]. The
structure consists of Ni(C2H8N2)2NO2 chains along the b-axis as shown in figure 11. These
chains are well separated from each other by ClO4 molecules.

The temperature dependence of the magnetic susceptibility of a single-crystal sample of
NENP was measured by Renard et al [47]. The susceptibility shows a broad peak around
60 K, which is characteristic of lower-dimensional antiferromagnets, and a steep decrease at
low temperatures. The latter behaviour is consistent with the presence of a singlet ground
state and a gap to the lowest excited state in this compound. The magnetic parameters are
determined to be [46] |J |/kB = 47.5 K, ga = 2.23, gb = 2.15 and gc = 2.21. From neutron
inelastic scattering measurements, the inter-chain exchange interaction, J ′, is found to be much
smaller than J (|J ′/J | = 4 × 10−4) [47].

The first ESR experiment on a Haldane material was performed by Date and Kindo [48].
They observed an ESR signal at ν = 47.0 GHz in a single-crystal sample of NENP. The
temperature dependence of the intensity of this ESR signal is shown in figure 12. It is
immediately clear that the ESR line comes from a transition within excited states, not from
a ground state, for the reason given below. The intensity of ESR depends on the difference
in thermal population between the energy levels pertaining to the ESR transition. If there
is an energy gap between the ground and the lowest excited state, the thermal population of
the excited state is larger at higher temperature. On the other hand, the difference in thermal
population within the excited states becomes small with increasing temperature. Consequently,
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Figure 11. The crystal structure of Ni(C2H8N2)2NO2(ClO4), abbreviated as NENP.

Figure 12. The temperature dependence of the ESR intensity in NENP. (Figure from reference [48].)

the intensity of the ESR transition within the excited states exhibits a peak at a finite temperature
as is seen from figure 12. The result of the ESR measurement was analysed on the basis of the
energy level scheme proposed to explain the behaviour of the magnetization of NENP in high
magnetic fields [49].
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As described in section 3, the first excited state of an S = 1 1D HAF is a triplet. Due to
the crystal structure, single-ion anisotropy terms such as DS2

z and E(S2
x − S2

y ) are present for
NENP. In the following discussion, we neglect the E-term because it is much smaller than the
D-term.

In figure 13 we show the energy level scheme for an S = 1 1D HAF. Figure 13(a) depicts
the singlet ground state and first excited triplet of the unperturbed system. When D (>0) is
introduced, the triplet state splits into a lower doublet and a higher singlet [50] as shown in
figure 13(b). Note that the splitting of the triplet state by the D-term in the S = 1 1D HAF is
opposite to the case for an isolated S = 1 ion in a tetragonal crystal field. We start from the
energy level scheme in figure 13(b) and apply the conventional one-ion crystal-field theory to
discuss the field dependence, although the energy levels originate from quantum many-body
effects. On applying B parallel to the z-axis (the quantization axis of the D-term), the triplet
state Zeeman splits as in figure 13(c). When B is applied perpendicularly to z (B ‖ x),
the energy levels depend non-linearly on B as shown in figure 13(d). The energy levels in
figures 13(b) and 13(c) are specified by the z-component of the total spin, S tot

z . For the singlet
ground state S tot

z = 0, and for the triplet state S tot
z = ±1 and 0. ESR transitions are possible

within the triplet states whose S tot
z -values differ by ±1 as in ordinary ESR. In the case of

figure 13(d), all of the transitions within the excited states become possible because of the
mixing.

Figure 13. The energy level scheme for an S = 1 one-dimensional Heisenberg antiferromagnet.
(a) The singlet ground state and first excited triplet in an isotropic case and in zero field. (b) Those
with the single-ion D-term in zero field. (c), (d) Effects of the external magnetic field on (b).

Field theoretic treatments of the excited triplet in an applied magnetic field have been
reported [51,52]. Golinelli et al [53] made exact-diagonalization and perturbation calculations
on the lowest excited triplet of an S = 1 1D HAF. These theoretical studies gave essentially
the same result as that shown in figure 13.

The field dependence of the lowest triplet in NENP has been measured directly by neutron
inelastic scattering experiments. Figure 14 shows the result obtained by Regnault et al [54] at
k = π and T = 1.4 K for B parallel to the c-axis. Qualitatively, the behaviour of the energy
levels in the field B is the same as in figure 13(d). The small splitting between the modes
denoted by X and Y at B = 0 in figure 14 comes from the single-ion anisotropy E-term.

Surprisingly, the ESR transitions from the singlet ground state to the excited triplet
which are forbidden by the momentum conservation law (for the ground state k = 0 and
for the lowest excited triplet k = π ) have also been observed in NENP [55–58] and a related
compound Ni(C3H10N2)2NO2(ClO4) (NINO) [57, 58]. Figure 15 shows the most complete
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Figure 14. The magnetic field dependence of the first excited triplet in NENP obtained from the
neutron inelastic scattering measurements. The external field is applied perpendicularly to the
chain axis. (Figure from reference [54].)

Figure 15. Frequency versus magnetic field plots of the ESR positions observed in (a) NENP,
B ‖ b, (b) NENP, B ‖ a, c, (c) NINO, B ‖ b, (d) NINO, B ‖ c. (Figure from reference [57].)

frequency–field plots to date for the ESR points for NENP and NINO [57]. The ESR transitions
from the ground state can be identified from the temperature dependence of the intensity,
because the ESR intensity from the ground state increases with decreasing temperature.
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Two theories [59,60] were presented to explain these unexpected ESR transitions. If one
looks at figure 11 carefully, one recognizes that there are two crystallographically inequivalent
sites for Ni2+ ions with one of the principal axes of the octahedron tilted away from the b-axis
to either side when one moves from one site to another along the b-axis. When the external
magnetic field is applied along the b-axis, this tilting of the crystal-field axis causes a staggered
field at each Ni2+ site [61]. This staggered magnetic field mixes the state at k = 0 with that
at k = π , thereby making the transitions from the ground state to the excited triplet possible.
A polarization analysis of the ESR absorption in NINO [62] has confirmed the theoretical
prediction. A small difference in the Haldane gap energy has been reported between that
determined from the neutron inelastic scattering and that from ESR experiments [57].

Usually, Q1D magnets exhibit a long-range ordering (LRO) at a finite temperature [13]
due to the inter-chain interaction. The compound NENP does not show any indication of
LRO down to 300 µK [63], whereas the Q1D HAF CsNiCl3 shows LRO at ∼4.7 K [64].
The difference in behaviour between the two compounds comes from the difference in the
strength of J ′. How robust is the Haldane phase in a Q1D HAF against perturbation? Sakai
and Takahashi [65] studied theoretically an S = 1 Q1D HAF with a single-ion anisotropy.
Figure 16 shows the phase diagram in theD–J ′ plane at T = 0 K [65], where z is the number
of neighbouring chains. We see that the Haldane phase (denoted by ‘H disorder’ in figure 16)
exists for a rather wide range of anisotropy and J ′-values.

Figure 16. The theoretical phase diagram for an S = 1 quasi-one-dimensional Heisenberg anti-
ferromagnet with single-ion anisotropy. (Figure from reference [65] with a small change in the
labelling for consistency with the text.)

As reported before [49], strong magnetic fields destroy the Haldane gap and the system
recovers magnetism. Then, we expect LRO to occur in a Q1D S = 1 HAF under high
fields and at low temperatures. This was demonstrated experimentally by Honda et al [66] for
Ni(C5H14N2)2N3(PF6) (NDMAP). The value of J for NDMAP is determined to be 30.0 K [66],
which is considerably smaller than that of NENP. So, a heat capacity measurement—which is
one of the best methods for confirming the occurrence of LRO—can be done with a commercial
superconducting magnet.

Figure 17 shows theB(H )–T phase diagram of NDMAP determined from the heat capacity
measurement [66]. The low-T and high-B region above the boundary corresponds to the LRO
phase in the respective field direction. The anisotropy in the phase boundary is explained as
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Figure 17. The magnetic field versus temperature phase diagram of the S = 1 quasi-one-
dimensional antiferromagnet Ni(C5H14N2)2N3(PF6). (Figure from reference [66].)

follows. Because the sign of the single-ion anisotropy constant D is positive, spins in the
ordered phase lie in a plane perpendicular to the c-axis of the crystal, which is the quantization
axis of D. When B is applied parallel to the c-axis, the XY symmetry is retained. On the
other hand, when B is applied perpendicularly to the c-axis, the XY symmetry is broken and
an Ising anisotropy is produced. It is widely accepted that the phase transition temperature of
an Ising system is higher than that of an XY system for a given space dimensionality.

Figure 18 shows the results of ESR measurements made on a single crystal of NDMAP at
T = 1.7 K for B ‖ b-axis [67]. These experimental points constitute two excitation branches.
Here, HLRO is the field at the transition from the disordered to the LRO phase at T = 1.7 K
(figure 17). Since we expect an antiferromagnetic arrangement of spins to exist in the LRO
phase, one of these two branches must be identified as an AFMR mode. Due to the single-ion
anisotropy D-term (D > 0), spins in the LRO phase are confined to a plane perpendicular to
the c-axis. A small anisotropy coming from the single-ion E-term determines the easy axis
in this plane, provided that we neglect the effects of dipole–dipole interaction. The branch
labelled ‘AFMR’ was assigned to the AFMR mode from the temperature dependence of the
resonance point which showed a sudden change around TN. The frequency versus magnetic
field relation of the AFMR branch was found to be well fitted with the following formula
proposed by Magariño et al [68] for analysing the AFMR mode in the quasi-1D S = 5/2 HAF
(CH3)4NMnCl3 (TMMC):

2πν/γ = g⊥µB{(B − B0)
2 − C}1/2 (11)

where B0 is a constant which was introduced to include a quantum effect on the AFMR
frequency [68] and C is a constant. From a fitting of equation (11) to the experimental data
(figure 18), B0 = 2.0 T andC = 14.5 T2 have been obtained. Osano et al [69] have calculated
the magnon spectra of TMMC in a magnetic field taking into account the non-linear couplings
among magnons (quanta associated with spin waves). The value of B0 obtained for NDMAP
is larger than that for TMMC. This shows that the quantum fluctuation in a quasi-1D HAF
becomes more prominent with decreasing S-value. The constant C in equation (11) is given
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Figure 18. The ESR signals observed in the long-range-ordered phase of Ni(C5H14N2)2N3(PF6)
are plotted in the frequency–magnetic field plane. The dot–dashed line represents the EPR one
with g = 2.17 along which a weak signal has been observed. (Figure from reference [67].)

by C = 2BEBA [10]. Using the value J/kB = 30.0 K determined before [66], BA = 0.18 T
(gµBBA/kB = 0.26 K) is obtained. The ESR transitions from the ground state have not been
observed in NDMAP. This is consistent with the fact that only one site exists for Ni2+ in this
compound, so no staggered field is induced under applied magnetic fields.

4.2. Observing an S = 1
2 degree of freedom in an S = 1 1D HAF by means of ESR

As is explained in section 3, the VBS model [19] has been proposed to describe the ground
state of an S = 1 1D HAF. The idea for testing the validity of the VBS model experimentally
was as follows [20]: as is shown in figure 19(b), when a host atom is substituted for with
an impurity atom, the valence bonds will be broken at the impurity sites if the exchange

Figure 19. (a) As figure 8(a). (b) A host atom is substituted for with an impurity, resulting in
spin- 1

2 states at host sites neighbouring the impurity. The arrows show the spin moment. (Figure
from reference [20].)
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interaction between the host and impurity spins is sufficiently weak. This will result in an
S = 1

2 degree of freedom at the host spin sites neighbouring the impurity. ESR measurements
were performed on a single crystal of NENP containing �0.7 at.% Cu2+ impurity [20]. Three
ESR lines are observed at the X and K (∼22 GHz) bands at 4.2 K, whose intensities decrease
rapidly with increasing temperature. From these observations, it is evident that the ESR lines
do not come from free Cu2+ ions isolated from the chains. Then, it is natural to invoke a
weak exchange coupling between Ni2+ and Cu2+ spins. The following two cases should be
considered: (i) Ni2+(S = 1)–Cu2+–Ni2+(S = 1) and (ii) Ni2+(S = 1

2 )–Cu2+–Ni2+(S = 1/2).
Here, Cu2+ is assumed to have S = 1

2 as is generally accepted. Since the value of D for Ni2+

in NENP is �12 K [70], the ESR frequency and field expected for case (i) are much higher
than those observed in this experiment. So, only case (ii) is possible. The results of the ESR
measurements were analysed with the following Hamiltonian when B is applied along the
b-axis:

H = −2[Jc(S
x
1 + Sx2 )s

x + Ja(S
y

1 + Sy2 )s
y + Jb(S

z
1 + Sz2)s

z] +GbµBB(S
z
1 + Sz2) + gbµBBs

z

(12)

where, Ja , Jb and Jc are, respectively, the components along the crystallographic a-, b- and
c-axes of the exchange interaction between the host and impurity spins, S1 and S2 the 1

2 -spin
degrees of freedom induced at the host sites, s the impurity spin, Gb the g-value along the
b-axis of the S = 1

2 degrees of freedom and gb the g-value of the impurity spin parallel
to the b-axis. Note that no D-term is possible for S = 1

2 . The Hamiltonian when B is
applied parallel to the a- or c-axes is given similarly. The eigenvalues of equation (12) are
plotted against B in figure 20. Here, the following values of the parameters have been used:
Ja = 0.79 cm−1, Jb = 0.67 cm−1, Jc = 0.83 cm−1, Gb = 2.15 and gb = 2.24. The broken
lines in figure 20 show the allowed transitions for the microwave frequencies at 9.25 GHz and
21.7 GHz obtained from a calculation of the probabilities of transition between the energy

Figure 20. The eigenvalues of equation (12) are plotted
versus the external magnetic field applied along the b-
axis.
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levels. The experimental results observed at the same frequencies are also shown by the thin
and thick arrows. We see that the agreement between theory and experiment is satisfactory.
The angular dependence of the ESR positions is also satisfactorily explained. The Hamiltonian
(equation (12)) is phenomenological. Kaburagi and Tonegawa [71] have calculated low-lying
excited states of anS = 1 1D HAF with anS = 1

2 impurity by means of variational methods and
numerical diagonalization. They showed that equation (12) can be derived from the ordinary
Hamiltonian and that the origin of the anisotropy in the exchange interactions (Jb �= Ja � Jc)
can be explained as arising from the D-term. Given the energy levels, one can calculate the
magnetic properties, e.g., the magnetization curve, of this system at low temperatures. It has
been shown that the magnetization curve observed for NENP:Cu2+ is quantitatively reproduced
by a calculation without any adjustable parameters [72].

The fractional S = 1
2 states have also been observed in NENP doped with non-magnetic

atoms such as Zn, Cd and Hg [73] and in Y2BaNiO5 [74]. In the latter sample, a few per cent
of Ni2+ are substituted for with Ni3+ with S = 1

2 due to an excess of oxygen.
As is described above, the ground state and low-lying excited states of an S = 1 1D HAF

with an impurity are well described by the presence of the S = 1
2 degrees of freedom at the

chain ends, thus giving strong evidence for the VBS model as a good description of the ground
state. Miyashita and Yamamoto [75] have made a quantum Monte Carlo study of the finite
S = 1 1D HAF and shown that a staggered moment appears in the chain, the magnitude of
which decays exponentially with the distance from the chain ends.

4.3. ESR in pure and doped CuGeO3

As described in section 3, CuGeO3 is the first inorganic material found to exhibit a spin–Peierls
transition. This compound crystallizes in the orthorhombic system with the Cu–O–Cu chains
along the c-axis [29].

TheB(H )–T phase diagram of CuGeO3 determined from magnetization measurements is
shown in figure 21 [76]. We have the three phases denoted by D, U and M. The boundary line
separating the M and U phases has been supplemented by ac susceptibility measurements [77].
Hase et al [76] claimed that the B(H )–T phase diagram of CuGeO3 is qualitatively the same
as those obtained for organic spin–Peierls compounds [28]. In the D phase, the system is in the
dimerized state shown schematically in figure 9(c) with spin-singlet and lattice dimerization. In
the U phase, the system is in an S = 1

2 Q1D HAF state without lattice distortion. The M phase
is in a magnetized state with an incommensurate lattice distortion whose wave vector changes
with B [78, 79]. The magnetized chains consist of singlet dimers separated by a domain wall
forming a soliton lattice [79]. The existence of the magnetic soliton lattice was confirmed
from Cu NMR in CuGeO3 up to ∼17 T [80]. A synchrotron x-ray scattering experiment in
high magnetic fields showed that the lattice modulation has the form of a soliton lattice [81].

Brill et al [82] have made ESR measurements on CuGeO3 in the D phase. They observed
two kinds of ESR signal, whose intensities behaved differently with varying temperature. The
intensity of one increases with decreasing temperature, while that of the other shows a broad
peak at a finite temperature. This behaviour of the ESR signals in CuGeO3 is very similar to
the one observed for NENP (see section 4.1).

An antiferromagnetically coupled S = 1
2 dimer exhibits the energy level scheme shown

on the right-hand side of figure 5. On applying an external magnetic field, the excited triplet
Zeeman split and ESR transitions within the triplet whose intensities show a broad peak in
the temperature dependence are possible. Although the D phase in a spin–Peierls system
originates from many-body quantum effects, one expects the D phase to have essentially the
same energy level scheme as an isolated dimer.
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Figure 21. The temperature versus magnetic field phase diagram of CuGeO3. D: dimerized phase;
M: mixed phase; U: uniform phase. (Figure from reference [76].)

The observation of an ESR signal whose intensity increases with decreasing temperature
means that this signal is caused by a transition from the ground state to the excited triplet. This
transition is forbidden for an ordinary Hamiltonian. A mechanism which makes this transition
possible has been proposed [83] which invokes the Dzyaloshinsky–Moriya interaction.

The ESR technique has been used to elucidate the disorder-induced long-range ordering
in this spin–Peierls system. Figure 22 shows the results of ESR measurements made on a
single-crystal sample of Cu0.96Zn0.04GeO3 [84]. Here, the angular frequency, ω, is divided by
the magneto-mechanical ratio, γ , to express it in magnetic field units (ω/γ = 1 T corresponds
to 28.0 GHz with g = 2.00) and the external magnetic field, B, is scaled by the g-value
parallel to the a-, b- or c-axes for the respective field directions. It is clear that we have
observed ESR signals from a magnetically ordered phase, not from the D phase, because the
frequency–field relation of the ESR in the D phase [82, 83] is completely different from that
shown in figure 22. Comparing the frequency–field chart in figure 22 with that of the uniaxial
antiferromagnet MnF2 shown in figure 2, we see a similarity between the two, except that
there are two ESR frequencies at B = 0 and the resonant frequency depends non-linearly
on B for Cu0.96Zn0.04GeO3. The experimental results given in figure 22 are explained by
the theory of AFMR [10] with orthorhombic anisotropy. From a comparison between theory
and experiment, one finds that the easy, second easy and hard axes are parallel to the c-, a-
and b-axes, respectively. The full, dotted and dash–dotted lines in figure 22 are theoretical
ones [10] with K1/χ⊥ � 0.45 T2 and K2/χ⊥ � 1.05 T2, where K1 and K2 are the anisotropy
constants.

Antiferromagnetic resonance has been observed also in CuGe1−ySiyO3 [85] and in
Cu1−xNixGeO3 [86].
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Figure 22. The frequency versus magnetic field plots of the resonance points at 1.7 K in a single-
crystal sample of Cu0.96Zn0.04GeO3. Open squares, triangles and circles denote experimental data
and dotted, dash–dotted and full curves are theoretical ones for B ‖ a-, b- and c-axes, respectively.
(Figure from reference [84].)

5. ESR in more complex systems

The S = 1 1D HAF with bond alternation shown schematically in figure 9(b) exhibits
interesting properties. As discussed theoretically by Singh and Gelfand [87], this system
shows a transition from the Haldane phase to a dimerized one at the critical value of J1/J2

(or J2/J1) ∼0.6. Tonegawa et al [88] studied numerically the same system with single-ion
anisotropy and magnetic fields, where the critical value is given as �0.6 for D = B = 0. We
can understand these theoretical results qualitatively as follows. When J1 = J2 the system
is in the Haldane state. On the other hand, when either J1  J2 or J2  J1, the system
can be viewed as a collection of almost independent antiferromagnetic dimers. So, there is a
transition from the Haldane to the dimerized phase at a critical value of J1/J2.

Several S = 1 Q1D antiferromagnets with bond alternation have been synthesized
[89, 90]. Narumi et al measured the magnetization of an S = 1 Q1D antiferromagnet
with bond alternation, Ni2(Medpt)2(µ-ox)(µ-N3)ClO4·0.5H2O, [91], where Medpt represents
methylbis(3-aminopropyl)amine. The result is shown in figure 23. The magnetization is very
small below ∼15 T and begins to increase at ∼17 T as was observed in S = 1 Haldane
materials [49]. A new finding is that M is almost independent of B between 43 and 55 T,
above which M begins to increase again. The value of M in the intermediate phase is half of
the saturation magnetization.

The appearance of the plateau in the magnetization curve of an S = 1 1D antiferromagnet
with bond alternation is explained qualitatively as follows. We consider two limiting cases.
First, let us start with the VBS model shown in figure 8(a). In the present case, because of the
bond alternation, the critical field, BT, at which the Haldane gap is destroyed is related mainly
to the weaker exchange interaction (say, J1). Above B > BT the singlet bonds connected by
J1 are gradually broken with increasing field and finally an S = 1

2 degree of freedom appears
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Figure 23. The magnetization curve of the S = 1 quasi-one-dimensional antiferromagnet with
bond alternation Ni2(Medpt)2(µ-ox)(µ-N3)ClO4·0.5H2O. (Figure from reference [91].)

at each atomic site. Then, the magnetization stays constant until the second gap, determined
mainly by J2, closes. This gives the plateau in the magnetization curve whose value is half of
the saturation magnetization. On increasing B further, the singlet bonds connected by J2 are
gradually broken as B increases up to saturation.

If we start with isolated S = 1 antiferromagnetic dimers coupled by J2, we have a singlet
ground state, first excited triplet with S tot = 1 and the highest quintuplet with S tot = 2. The
triplet lies above the ground state by J2 and the quintuplet by 3J2. When B is applied to this
system, the triplet and quintuplet states Zeeman split. The energy level of the excited triplet
with S tot

z = −1 decreases with B and finally crosses the ground state where the magnetization
increases from zero to half of the saturation magnetization. This state stays unchanged until
the energy level of the excited quintuplet with S tot

z = −2 crosses the ground state at which
the magnetization saturates. In this case, we expect a stepwise transition to occur at the two
critical fields. Figure 23 shows that in a real system the transition is rather gradual, which
reflects quantum many-body effects due to J1.

An ESR study on S = 1 bond-alternating chains should give important information on
the ground state. Narumi et al [92] claimed that the ground state is the S = 1 dimer state from
their ESR measurements on the S = 1 antiferromagnetic bond-alternating chain compound
[Ni(333-tet)(µ-NO2)](ClO4) doped with a small amount of Zn.

Several copper oxides which can be regarded as a spin-ladder materials were synthesized
[93]. Azuma et al [94] showed from magnetic susceptibility measurements that the S = 1

2
two-leg-ladder material SrCu2O3 has a spin gap of ∼420 K. In principle, one can observe
the ESR transitions within the excited triplet at high temperatures corresponding to the spin
gap. The compound Sr14Cu24O41 has two types of building block. One is simple chains of Cu
ions and the other is two-leg ladders of Cu ions. A novel dimerized state has been found in
the chain part of Sr14Cu24O41 by ESR [95] and neutron inelastic scattering [96] experiments.
This dimerized state originates from an interplay between spin and charge. The compound
NH4CuCl3 has a ladder-like structure and exhibits two plateaus in the magnetization curve
at Bc1 < B < Bc2 and Bc3 < B < Bc4 [97]. Several ESR lines have been observed in the
respective phases in magnetic fields [98].
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Recently, new Q2D materials with singlet ground states and energy gaps to the excitation
such as CaV4O9 [99] and SrCu2(BO3)2 [100] have been discovered. ESR transitions from the
singlet ground state to the excited triplets have been observed in the latter material [101].

In the 1980s there was great progress in the understanding of random magnetism. In
particular, spin glasses [102] and random magnets with competing spin anisotropies [103,104]
were intensively studied. The ESR method has been used to elucidate the magnetic properties
of the latter system [105].

There is a large amount of ESR information on ABX3-type triangular lattice antiferro-
magnets, where A stands for alkaline metal, B for the 3d transition metal and X for halogen
atoms. Generally these materials show successive magnetic transitions due to frustration. In
the ordered phases, the magnetic structure is more complex than that of conventional antiferro-
magnets. Therefore, one needs three or six sublattices to describe the magnetic properties of
these systems. Several ESR signals corresponding to the motions of these multisublattices
have been observed [106].

Molecular magnetic cluster complexes like [Fe8O2(OH)12(C6H15N3)6]Br7(H2O)Br·H2O
and [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O have attracted much attention in
recent years, because these samples show a macroscopic quantum tunnelling phenomenon
[107]. In these materials, the ground state has a total spin Stot = 10 and they exhibit
a complicated energy level scheme due to the presence of the single-ion anisotropy term.
ESR is best suited for determining the energy levels because the energy resolution is much
better than that of neutron scattering determinations. ESR measurements made on these
materials [108–111] have revealed the energy level scheme.

6. Summary

We have reviewed the recent progress in the study of magnetic materials using a high-frequency
ESR technique. First, we saw how useful high-frequency ESR is for studying antiferromagnetic
materials, where the ESR frequency and magnetic field depend greatly on the exchange
interaction and anisotropy energy of the materials. Next, we reviewed recent high-frequency
ESR experiments made on S = 1 Haldane materials and the spin–Peierls system CuGeO3.
Then, we reviewed ESR studies performed on more complex systems, such as an S = 1 Q1D
antiferromagnet with bond alternation, spin-ladder compounds and Q2D magnets. Each of
these systems has a singlet ground state of quantum origin and an energy gap to the lowest
excited state. On applying an external magnetic field, the system shows a transition from the
non-magnetic to a magnetized state, and in some cases, long-range magnetic ordering occurs.
I have tried to explain the nature of the singlet ground states and the behaviour in applied
magnetic fields intuitively at the expense of rigour. I hope that this will be helpful to a broad
audience in providing an understanding of the underlying physics.
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[80] Fagot-Revurat Y, Horvatić M, Berthier C, Ségransan P, Dhalenne G and Revcolevschi A 1996 Phys. Rev. Lett.

77 1861
[81] Kiryukhin V, Keimer B, Hill J P and Vigliante A 1996 Phys. Rev. Lett. 76 4608
[82] Brill T M, Boucher J P, Voiron J, Dhalenne G, Revcolevschi A and Renard J P 1994 Phys. Rev. Lett. 73 1545
[83] Nojiri H, Ohta H, Okubo S, Fujita O, Akimitsu J and Motokawa M 1999 J. Phys. Soc. Japan 68 3417
[84] Hase M, Hagiwara M and Katsumata K 1996 Phys. Rev. B 54 R3722
[85] Nojiri H, Hamamoto T, Wang Z J, Mitsudo S, Motokawa M, Kimura S, Ohta H, Ogiwara S, Fujita O and

Akimitsu J 1997 J. Phys.: Condens. Matter 9 1331
[86] Glazkov V N, Smirnov A I, Petrenko O A, Paul D McK, Vetkin A G and Eremina R M 1998 J. Phys.: Condens.

Matter 10 7879
[87] Singh R R P and Gelfand M P 1988 Phys. Rev. Lett. 61 2133
[88] Tonegawa T, Nakao T and Kaburagi M 1996 J. Phys. Soc. Japan 65 3317
[89] Escuer A, Vicente R, Ribas J, El Fallah M S, Solans X and Font-Bardı́a M 1994 Inorg. Chem. 33 1842



R614 K Katsumata

[90] Escuer A, Vicente R, Solans X and Font-Bardı́a M 1994 Inorg. Chem. 33 6007
[91] Narumi Y, Hagiwara M, Sato R, Kindo K, Nakano H and Takahashi M 1998 Physica B 246+247 509
[92] Narumi Y, Hagiwara M, Kohno M and Kindo K 2000 Preprint
[93] Hiroi Z, Azuma M, Takano M and Bando Y 1991 J. Solid State Chem. 95 230
[94] Azuma M, Hiroi Z, Takano M, Ishida K and Kitaoka Y 1994 Phys. Rev. Lett. 73 3463
[95] Matsuda M and Katsumata K 1996 Phys. Rev. B 53 12 201
[96] Matsuda M, Katsumata K, Eisaki H, Motoyama N, Uchida S, Shapiro S M and Shirane G 1996 Phys. Rev. B

54 12 199
[97] Tanaka H, Shiramura W, Takatsu T, Kurniawan B, Takahashi M, Kamishima K, Takizawa K, Mitamura H and

Goto T 1998 Physica B 246+247 230
[98] Kurniawan B, Tanaka H, Takatsu K, Shiramura W, Fukuda T, Nojiri H and Motokawa M 1999 Phys. Rev. Lett.

82 1281
[99] Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Sato M, Nishioka T, Kontani M and Sano K 1995 J. Phys.

Soc. Japan 64 2758
[100] Kageyama H, Yoshimura K, Stern R, Mushnikov N V, Onizuka K, Kato M, Kosuge K, Slichter C P, Goto T

and Ueda Y 1999 Phys. Rev. Lett. 82 3168
[101] Nojiri H, Kageyama H, Onizuka K, Ueda Y and Motokawa M 1999 J. Phys. Soc. Japan 68 2906
[102] For a review see

Mydosh J A 1993 Spin Glasses: an Experimental Introduction (London: Taylor and Francis)
[103] For a review on the theoretical developments see

Aharony A 1983 J. Magn. Magn. Mater. 31–34 1432
[104] For a review on the experimental developments see

Katsumata K 1983 J. Magn. Magn. Mater. 31–34 1435
[105] For a review see

Tuchendler J and Katsumata K 1989 Physica B 155 323
[106] See, for example,

Kambe T, Tanaka H, Kimura S, Ohta H, Motokawa M and Nagata K 1996 J. Phys. Soc. Japan 65 1799
[107] For a review see

Gunther L and Barbara B (ed) 1995 Quantum Tunneling of Magnetization—QTM ’94 (NATO ASI Series E, vol
301) (Dordrecht: Kluwer)

[108] Sessoli R, Tsai H-L, Schake A R, Wang S, Vincent J B, Folting K, Gatteschi D, Christou G and Hendrickson D N
1993 J. Am. Chem. Soc. 115 1804

[109] Barra A L, Gatteschi D and Sessoli R 1997 Phys. Rev. B 56 8192
[110] Hill S, Perenboom J A A J, Dalal N S, Hathaway T, Stalcup T and Brooks J S 1998 Phys. Rev. Lett. 80 2453
[111] Barra A-L, Debrunner P, Gatteschi D, Schulz Ch E and Sessoli R 1996 Europhys. Lett. 35 133


